1299
points
Questions
36
Answers
150

In a dream, I was travelling in a country where they had strange ways of doing things. One little incident was fresh in my memory when I awakened. I saw a clock and announced the time as it appeared to be indicated, but my guide corrected me.
He said, “You are apparently not aware that the minute hand always moves in the opposite direction to the hour hand. Except for this improvement, our clocks are precisely the same as. those you have been accustomed to.” Since the hands were exactly together between the hours of four and five o clock, and they started together at noon, what is the real time?View SolutionSubmit Solution 1,348.2K views
 1 answers
 0 votes

A correspondent informs us that on Armistice Day (November 11, 1928) he had lived as long in the twentieth century as he had lived in the nineteenth. This tempted us to work out the day of his birth. Perhaps the reader may like to do the same. We will assume he was born at midday
View SolutionSubmit Solution 1,349.3K views
 1 answers
 0 votes

Here is an ancient puzzle that has always perplexed some people. Two market women were selling their apples, one at three for a penny and the other at two for a penny. One day they were both called away when each had thirty apples unsold: these they handed to a friend to sell at five for 2¢. It will be seen that if they had sold their apples separately they would have fetched 25¢, but when they were sold together they fetched only 24¢.
“Now,” people ask, “what in the world has become of that missing penny?” because, it is said, three for l¢ and two for l¢ is surely exactly the same as five for 2¢.
Can you explain the little mystery?View SolutionSubmit Solution 1,349.8K views
 1 answers
 0 votes

A grocer in a small business had managed to put aside (apart from his legitimate profits) little sum in dollar bills, half dollars, and quarters, which he kept in eight bags, there being the same number of dollar bills and of each kind of coin in every bag. One night he decided to put the money into only seven bags, again with the same number of each kind of currency in every bag. And the following night he further reduced the number of bags to six, again putting the same number of each kind of currency in every bag. The next night the poor demented miser tried to do the same with five bags, but after hours of trial he utterly failed, had a fit, and died, greatly respected by his neighbors. What is the smallest possible amount of money he had put aside?
View SolutionSubmit Solution 1,349.8K views
 1 answers
 0 votes

Nine persons in a party, A, B, C, D, E, F, G, H, K, did as follows: First A gave each of the others as much money as he (the receiver) already held; then B did the same; then C; and so on to the last, K giving to each of the other eight persons the amount the receiver then held. Then it was found that each of the nine persons held the same amount. Can you find the smallest amount in cents that each person could
have originally held?View SolutionSubmit Solution 1,349.4K views
 1 answers
 0 votes

There are eleven different ways of writing 100 in the form of mixed numbers using all the nine digits once and only once. Tenof the ways have two figures in the integral part of the number, but the eleventh expression has only one figure there.
Can you find all the eleven expressions?View SolutionSubmit Solution 1,351.0K views
 1 answers
 1 votes