Logic Puzzles

You have twelve coins. You know that one is fake. The only thing that distinguishes the fake coin from the real coins is that its weight is imperceptibly different. You have a perfectly balanced scale. The scale only tells you which side weighs more than the other side.
What is the smallest number of times you must use the scale in order to always find the fake coin?
Use only the twelve coins themselves and no others, no other weights, no cutting coins, no pencil marks on the scale. etc.
These are modern coins, so the fake coin is not necessarily lighter.
Presume the worst case scenario, and don’t hope that you will pick the right coin on the first attempt.
View SolutionSubmit Solution 4535 views
 1 answers
 0 votes

A stark raving mad king tells his 100 wisest men he is about to line them up and that he will place either a red or blue hat on each of their heads. Once lined up, they must not communicate amongst themselves. Nor may they attempt to look behind them or remove their own hat.
The king tells the wise men that they will be able to see all the hats in front of them. They will not be able to see the color of their own hat or the hats behind them, although they will be able to hear the answers from all those behind them.
The king will then start with the wise man in the back and ask “what color is your hat?” The wise man will only be allowed to answer “red” or “blue,” nothing more. If the answer is incorrect then the wise man will be silently killed. If the answer is correct then the wise man may live but must remain absolutely silent.
The king will then move on to the next wise man and repeat the question.
The king makes it clear that if anyone breaks the rules then all the wise men will die, then allows the wise men to consult before lining them up. The king listens in while the wise men consult each other to make sure they don’t devise a plan to cheat. To communicate anything more than their guess of red or blue by coughing or shuffling would be breaking the rules.
What is the maximum number of men they can be guaranteed to save?
View SolutionSubmit Solution 3835 views
 1 answers
 0 votes

You are trapped in a room with two doors. One leads to certain death and the other leads to freedom. You don’t know which is which.
There are two robots guarding the doors. They will let you choose one door but upon doing so you must go through it.
You can, however, ask one robot one question. The problem is one robot always tells the truth ,the other always lies and you don’t know which is which.
What is the question you ask?
View SolutionSubmit Solution 5737 views
 1 answers
 1 votes

Four angels sat on the Christmas tree amidst other ornaments. Two had blue halos and two – yellow. However, none of them could see above his head. Angel A sat on the top branch and could see the angels B and C, who sat below him. Angel B, could see angel C who sat on the lower branch. And angel D stood at the base of the tree obscured from view by a thicket of branches, so no one could see him and he could not see anyone either.
Which one of them could be the first to guess the color of his halo and speak it out loud for all other angels to hear?View SolutionSubmit Solution 4864 views
 1 answers
 0 votes

After losing the “Spot on the Forehead” contest, the two defeated Puzzle Masters complained that the winner had made a slight pause before raising his hand, thus derailing their deductive reasoning train of thought. And so the Grand Master vowed to set up a truly fair test to reveal the best logician amongst them.
He showed the three men 5 hats – two white and three black. Then he turned off the lights in the room and put a hat on each Puzzle Master’s head. After that the old sage hid the remaining two hats, but before he could turn the lights on, one of the Masters, as chance would have it, the winner of the previous contest, announced the color of his hat. And he was right once again.
What color was his hat? What could have been his reasoning?View SolutionSubmit Solution 5763 views
 1 answers
 0 votes

One absentminded ancient philosopher forgot to wind up his only clock in the house. He had no radio, TV, telephone, internet, or any other means for telling time. So he traveled on foot to his friend’s place few miles down the straight desert road. He stayed at his friend’s house for the night and when he came back home, he knew how to set his clock.
How did he know?View SolutionSubmit Solution 3999 views
 1 answers
 0 votes

Three cannibals and three anthropologists have to cross a river.
The boat they have is only big enough for two people. The cannibals will do as requested, even if they are on the other side of the river, with one exception. If at any point in time there are more cannibals on one side of the river than anthropologists, the cannibals will eat them.
What plan can the anthropologists use for crossing the river so they don’t get eaten?
Note: One anthropologist can not control two cannibals on land, nor can one anthropologist on land control two cannibals on the boat if they are all on the same side of the river. This means an anthropologist will not survive being rowed across the river by a cannibal if there is one cannibal on the other side.
View SolutionSubmit Solution 35023 views
 1 answers
 2 votes

There are three boxes. One is labeled “APPLES” another is labeled “ORANGES”. The last one is labeled “APPLES AND ORANGES”. You know that each is labeled incorrectly. You may ask me to pick one fruit from one box which you choose.
How can you label the boxes correctly?
View SolutionSubmit Solution 4134 views
 1 answers
 0 votes

An Arab sheikh tells his two sons to race their camels to a distant city to see who will inherit his fortune. The one whose camel is slower wins. After wandering aimlessly for days, the brothers ask a wise man for guidance. Upon receiving the advice, they jump on the camels and race to the city as fast as they can.
What did the wise man say to them?View SolutionSubmit Solution 7919 views
 2 answers
 1 votes

A Petri dish hosts a healthy colony of bacteria. Once a minute every bacterium divides into two. The colony was founded by a single cell at noon. At exactly 12:43 (43 minutes later) the Petri dish was half full.
At what time will the dish be full?View SolutionSubmit Solution 4809 views
 1 answers
 0 votes